The Human Blood Transcriptome in a Large Population Cohort and Its Relation to Aging and Health.


Background: The blood transcriptome is expected to provide a detailed picture of an organism's physiological state with potential outcomes for applications in medical diagnostics and molecular and epidemiological research. We here present the analysis of blood specimens of 3,388 adult individuals, together with phenotype characteristics such as disease history, medication status, lifestyle factors, and body mass index (BMI). The size and heterogeneity of this data challenges analytics in terms of dimension reduction, knowledge mining, feature extraction, and data integration. Methods: Self-organizing maps (SOM)-machine learning was applied to study transcriptional states on a population-wide scale. This method permits a detailed description and visualization of the molecular heterogeneity of transcriptomes and of their association with different phenotypic features. Results: The diversity of transcriptomes is described by personalized SOM-portraits, which specify the samples in terms of modules of co-expressed genes of different functional context. We identified two major blood transcriptome types where type 1 was found more in men, the elderly, and overweight people and it upregulated genes associated with inflammation and increased heme metabolism, while type 2 was predominantly found in women, younger, and normal weight participants and it was associated with activated immune responses, transcriptional, ribosomal, mitochondrial, and telomere-maintenance cell-functions. We find a striking overlap of signatures shared by multiple diseases, aging, and obesity driven by an underlying common pattern, which was associated with the immune response and the increase of inflammatory processes. Conclusions: Machine learning applications for large and heterogeneous omics data provide a holistic view on the diversity of the human blood transcriptome. It provides a tool for comparative analyses of transcriptional signatures and of associated phenotypes in population studies and medical applications.

Health Atlas ID: 86RMN31R1M-7

PubMed ID: 33693414

Projects: LIFE Adult

Publication type: Journal article

Journal: Front Big Data

Human Diseases: No Human Disease specified

Citation: Front Big Data. 2020 Oct 30;3:548873. doi: 10.3389/fdata.2020.548873. eCollection 2020.

Date Published: 11th Mar 2021

Registered Mode: by PubMed ID

Authors: M. Schmidt, L. Hopp, A. Arakelyan, H. Kirsten, C. Engel, K. Wirkner, K. Krohn, R. Burkhardt, J. Thiery, M. Loeffler, H. Loeffler-Wirth, H. Binder


Views: 121

Created: 23rd Apr 2021 at 12:04

help Tags

This item has not yet been tagged.

help Attributions


Related items

Powered by
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies