Publications

13 Publications visible to you, out of a total of 13

Abstract (Expand)

BACKGROUND: Clinical trials, epidemiological studies, clinical registries, and other prospective research projects, together with patient care services, are main sources of data in the medical research domain. They serve often as a basis for secondary research in evidence-based medicine, prediction models for disease, and its progression. This data are often neither sufficiently described nor accessible. Related models are often not accessible as a functional program tool for interested users from the health care and biomedical domains. OBJECTIVE: The interdisciplinary project Leipzig Health Atlas (LHA) was developed to close this gap. LHA is an online platform that serves as a sustainable archive providing medical data, metadata, models, and novel phenotypes from clinical trials, epidemiological studies, and other medical research projects. METHODS: Data, models, and phenotypes are described by semantically rich metadata. The platform prefers to share data and models presented in original publications but is also open for nonpublished data. LHA provides and associates unique permanent identifiers for each dataset and model. Hence, the platform can be used to share prepared, quality-assured datasets and models while they are referenced in publications. All managed data, models, and phenotypes in LHA follow the FAIR principles, with public availability or restricted access for specific user groups. RESULTS: The LHA platform is in productive mode (https://www.health-atlas.de/). It is already used by a variety of clinical trial and research groups and is becoming increasingly popular also in the biomedical community. LHA is an integral part of the forthcoming initiative building a national research data infrastructure for health in Germany.

Authors: T. Kirsten, F. A. Meineke, H. Loeffler-Wirth, C. Beger, A. Uciteli, S. Staubert, M. Lobe, R. Hansel, F. G. Rauscher, J. Schuster, T. Peschel, H. Herre, J. Wagner, S. Zachariae, C. Engel, M. Scholz, E. Rahm, H. Binder, M. Loeffler

Date Published: 3rd Aug 2022

Publication Type: Journal article

Abstract (Expand)

The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared to information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known non-pathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification. This article is protected by copyright. All rights reserved.

Authors: Michael T. Parsons, Emma Tudini, Hongyan Li, Eric Hahnen, Barbara Wappenschmidt, Lidia Feliubadaló, Cora M. Aalfs, Simona Agata, Kristiina Aittomäki, Elisa Alducci, María Concepción Alonso-Cerezo, Norbert Arnold, Bernd Auber, Rachel Austin, Jacopo Azzollini, Judith Balmaña, Elena Barbieri, Claus R. Bartram, Ana Blanco, Britta Blümcke, Sandra Bonache, Bernardo Bonanni, Åke Borg, Beatrice Bortesi, Joan Brunet, Carla Bruzzone, Karolin Bucksch, Giulia Cagnoli, Trinidad Caldés, Almuth Caliebe, Maria A. Caligo, Mariarosaria Calvello, Gabriele L. Capone, Sandrine M. Caputo, Ileana Carnevali, Estela Carrasco, Virginie Caux-Moncoutier, Pietro Cavalli, Giulia Cini, Edward M. Clarke, Paola Concolino, Elisa J. Cops, Laura Cortesi, Fergus J. Couch, Esther Darder, Miguel de La Hoya, Michael Dean, Irmgard Debatin, Jesús Del Valle, Capucine Delnatte, Nicolas Derive, Orland Diez, Nina Ditsch, Susan M. Domchek, Véronique Dutrannoy, Diana M. Eccles, Hans Ehrencrona, Ute Enders, D. Gareth Evans, Ulrike Faust, Ute Felbor, Irene Feroce, Miriam Fine, Henrique C. R. Galvao, Gaetana Gambino, Andrea Gehrig, Francesca Gensini, Anne-Marie Gerdes, Aldo Germani, Jutta Giesecke, Viviana Gismondi, Carolina Gómez, Encarna B. Gómez Garcia, Sara González, Elia Grau, Sabine Grill, Eva Gross, Aliana Guerrieri-Gonzaga, Marine Guillaud-Bataille, Sara Gutiérrez-Enríquez, Thomas Haaf, Karl Hackmann, Thomas v. O. Hansen, Marion Harris, Jan Hauke, Tilman Heinrich, Heide Hellebrand, Karen N. Herold, Ellen Honisch, Judit Horvath, Claude Houdayer, Verena Hübbel, Silvia Iglesias, Angel Izquierdo, Paul A. James, Linda A. M. Janssen, Udo Jeschke, Silke Kaulfuß, Katharina Keupp, Marion Kiechle, Alexandra Kölbl, Sophie Krieger, Torben A. Kruse, Anders Kvist, Fiona Lalloo, Mirjam Larsen, Vanessa L. Lattimore, Charlotte Lautrup, Susanne Ledig, Elena Leinert, Alexandra L. Lewis, Joanna Lim, Markus Loeffler, Adrià López-Fernández, Emanuela Lucci-Cordisco, Nicolai Maass, Siranoush Manoukian, Monica Marabelli, Laura Matricardi, Alfons Meindl, Rodrigo D. Michelli, Setareh Moghadasi, Alejandro Moles-Fernández, Marco Montagna, Gemma Montalban, Alvaro N. Monteiro, Eva Montes, Luigi Mori, Lidia Moserle, Clemens R. Müller, Christoph Mundhenke, Nadia Naldi, Katherine L. Nathanson, Matilde Navarro, Heli Nevanlinna, Cassandra B. Nichols, Dieter Niederacher, Henriette R. Nielsen, Kai-Ren Ong, Nicholas Pachter, Edenir I. Palmero, Laura Papi, Inge Sokilde Pedersen, Bernard Peissel, Pedro Pérez-Segura, Katharina Pfeifer, Marta Pineda, Esther Pohl-Rescigno, Nicola K. Poplawski, Berardino Porfirio, Anne S. Quante, Juliane Ramser, Rui M. Reis, Françoise Revillion, Kerstin Rhiem, Barbara Riboli, Julia Ritter, Daniela Rivera, Paula Rofes, Andreas Rump, Monica Salinas, Ana María Sánchez de Abajo, Gunnar Schmidt, Ulrike Schoenwiese, Jochen Seggewiß, Ares Solanes, Doris Steinemann, Mathias Stiller, Dominique Stoppa-Lyonnet, Kelly J. Sullivan, Rachel Susman, Christian Sutter, Sean V. Tavtigian, Soo H. Teo, Alex Teulé, Mads Thomassen, Maria Grazia Tibiletti, Silvia Tognazzo, Amanda E. Toland, Eva Tornero, Therese Törngren, Sara Torres-Esquius, Angela Toss, Alison H. Trainer, Christi J. van Asperen, Marion T. van Mackelenbergh, Liliana Varesco, Gardenia Vargas-Parra, Raymonda Varon, Ana Vega, Ángela Velasco, Anne-Sophie Vesper, Alessandra Viel, Maaike P. G. Vreeswijk, Sebastian A. Wagner, Anke Waha, Logan C. Walker, Rhiannon J. Walters, Shan Wang-Gohrke, Bernhard H. F. Weber, Wilko Weichert, Kerstin Wieland, Lisa Wiesmüller, Isabell Witzel, Achim Wöckel, Emma R. Woodward, Silke Zachariae, Valentina Zampiga, Christine Zeder-Göß, Conxi Lázaro, Arcangela de Nicolo, Paolo Radice, Christoph Engel, Rita K. Schmutzler, David E. Goldgar, Amanda B. Spurdle

Date Published: 1st Sep 2019

Publication Type: Journal article

Human Diseases: hereditary breast ovarian cancer syndrome

Abstract (Expand)

Comparably little is known about breast cancer (BC) risks in women from families tested negative for BRCA1/2 mutations despite an indicative family history, as opposed to BRCA1/2 mutation carriers. We determined the age-dependent risks of first and contralateral breast cancer (FBC, CBC) both in noncarriers and carriers of BRCA1/2 mutations, who participated in an intensified breast imaging surveillance program. The study was conducted between January 1, 2005, and September 30, 2017, at 12 university centers of the German Consortium for Hereditary Breast and Ovarian Cancer. Two cohorts were prospectively followed up for incident FBC (n = 4,380; 16,398 person-years [PY], median baseline age: 39 years) and CBC (n = 2,993; 10,090 PY, median baseline age: 42 years). Cumulative FBC risk at age 60 was 61.8% (95% CI 52.8-70.9%) for BRCA1 mutation carriers, 43.2% (95% CI 32.1-56.3%) for BRCA2 mutation carriers and 15.7% (95% CI 11.9-20.4%) for noncarriers. FBC risks were significantly higher than in the general population, with incidence rate ratios of 23.9 (95% CI 18.9-29.8) for BRCA1 mutation carriers, 13.5 (95% CI 9.2-19.1) for BRCA2 mutation carriers and 4.9 (95% CI 3.8-6.3) for BRCA1/2 noncarriers. Cumulative CBC risk 10 years after FBC was 25.1% (95% CI 19.6-31.9%) for BRCA1 mutation carriers, 6.6% (95% CI 3.4-12.5%) for BRCA2 mutation carriers and 3.6% (95% CI 2.2-5.7%) for noncarriers. CBC risk in noncarriers was similar to women with unilateral BC from the general population. Further studies are needed to confirm whether less intensified surveillance is justified in women from BRCA1/2 negative families with elevated risk.

Authors: C. Engel, C. Fischer, S. Zachariae, K. Bucksch, K. Rhiem, J. Giesecke, N. Herold, B. Wappenschmidt, V. Hubbel, M. Maringa, S. Reichstein-Gnielinski, E. Hahnen, C. R. Bartram, N. Dikow, S. Schott, D. Speiser, D. Horn, E. M. Fallenberg, M. Kiechle, A. S. Quante, A. S. Vesper, T. Fehm, C. Mundhenke, N. Arnold, E. Leinert, W. Just, U. Siebers-Renelt, S. Weigel, A. Gehrig, A. Wockel, B. Schlegelberger, S. Pertschy, K. Kast, P. Wimberger, S. Briest, M. Loeffler, U. Bick, R. K. Schmutzler

Date Published: 13th May 2019

Publication Type: Not specified

Human Diseases: hereditary breast ovarian cancer syndrome

Abstract (Expand)

Background and Objective: Predicting individual mutation and cancer risks is essential to assist genetic counsellors in clinical decision making for patients with a hereditary cancer predisposition. Worldwide a variety of statistical models and empirical data for risk prediction have been developed and published for hereditary breast and ovarian cancer (HBOC), and hereditary non-polyposis colorectal cancer (HNPCC / Lynch syndrome, LS). However, only few models have so far been implemented in convenient and easy-to-use computer applications. We therefore aimed to develop user-friendly applications of selected HBOC and LS risk prediction models, and to make them available through the "Leipzig Health Atlas" (LHA), a web-based multifunctional platform to share research data, novel ontologies, models and software tools with the medical and scientific community. LHA is a project funded within the BMBF initiative "i:DSem – Integrative data semantics in system medicine". Methods and Results: We selected a total of six statistical models and empirical datasets relevant for HBOC and LS: 1) the Manchester Scoring System, 2) the "Mutation Frequency Explorer" of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC), 3) an extended version of the Claus model, 4) MMRpredict, 5) PREMM1,2,6, and 6) PREMM5. The Manchester Scoring System allows calculation of BRCA1/2 mutation probabilities based on aggregated family history. The "Mutation Frequency Explorer" allows flexible assessment of mutation risks in BRCA1/2 and other genes for different sets of familial cancer histories based on a large dataset from the GC-HBOC. The extended Claus model (as implemented in the commercial predigree drawing software Cyrillic 2.1.3, which is no longer supported and no longer works on newer operating systems) predicts both mutation and breast cancer risks based on structured pedigree data. MMRpredict, PREMM 1,2,6, and PREMM 5 predict mutation risks in mismatch repair genes for patients from families suspected of having LS. All models were implemented using the statistical software "R" and the R-package "Shiny". "Shiny" allows the development of interactive applications by incorporating "R" with HTML and other web technologies. The Shiny apps are accessible on the website of the "Leipzig Health Atlas" (https://www.health-atlas.de) for registered researchers and genetic counselors. Conclusions: The risk prediction apps allow convenient calculation of mutation or cancer risks for an advice-seeking individual based on pedigree data or aggregated information on the familial cancer history. Target users should be specialized health professionals (physicians and genetic counselors) and scientists to ensure correct handling of the tools and careful interpretation of results.

Authors: Silke Zachariae, Sebastian Stäubert, C. Fischer, Markus Löffler, Christoph Engel

Date Published: 8th Mar 2019

Publication Type: InProceedings

Human Diseases: hereditary breast ovarian cancer syndrome, Lynch syndrome, colorectal cancer

Abstract (Expand)

BACKGROUND There is no international consensus up to which age women with a diagnosis of triple-negative breast cancer (TNBC) and no family history of breast or ovarian cancer should be offered geneticc testing for germline BRCA1 and BRCA2 (gBRCA) mutations. Here, we explored the association of age at TNBC diagnosis with the prevalence of pathogenic gBRCA mutations in this patient group. METHODS The study comprised 802 women (median age 40 years, range 19-76) with oestrogen receptor, progesterone receptor, and human epidermal growth factor receptor type 2 negative breast cancers, who had no relatives with breast or ovarian cancer. All women were tested for pathogenic gBRCA mutations. Logistic regression analysis was used to explore the association between age at TNBC diagnosis and the presence of a pathogenic gBRCA mutation. RESULTS A total of 127 women with TNBC (15.8%) were gBRCA mutation carriers (BRCA1: n = 118, 14.7%; BRCA2: n = 9, 1.1%). The mutation prevalence was 32.9% in the age group 20-29 years compared to 6.9% in the age group 60-69 years. Logistic regression analysis revealed a significant increase of mutation frequency with decreasing age at diagnosis (odds ratio 1.87 per 10 year decrease, 95%CI 1.50-2.32, p \textless 0.001). gBRCA mutation risk was predicted to be \textgreater 10% for women diagnosed below approximately 50 years. CONCLUSIONS Based on the general understanding that a heterozygous mutation probability of 10% or greater justifies gBRCA mutation screening, women with TNBC diagnosed before the age of 50 years and no familial history of breast and ovarian cancer should be tested for gBRCA mutations. In Germany, this would concern approximately 880 women with newly diagnosed TNBC per year, of whom approximately 150 are expected to be identified as carriers of a pathogenic gBRCA mutation.

Authors: Christoph Engel, Kerstin Rhiem, Eric Hahnen, Sibylle Loibl, Karsten E. Weber, Sabine Seiler, Silke Zachariae, Jan Hauke, Barbara Wappenschmidt, Anke Waha, Britta Blümcke, Marion Kiechle, Alfons Meindl, Dieter Niederacher, Claus R. Bartram, Dorothee Speiser, Brigitte Schlegelberger, Norbert Arnold, Peter Wieacker, Elena Leinert, Andrea Gehrig, Susanne Briest, Karin Kast, Olaf Riess, Günter Emons, Bernhard H. F. Weber, Jutta Engel, Rita K. Schmutzler

Date Published: 1st Dec 2018

Publication Type: Journal article

Human Diseases: hereditary breast ovarian cancer syndrome

Abstract (Expand)

PURPOSE: To characterise the prevalence of pathogenic germline mutations in BRCA1 and BRCA2 in families with breast cancer (BC) and ovarian cancer (OC) history. PATIENTS AND METHODS: Data from 21 401 families were gathered between 1996 and 2014 in a clinical setting in the German Consortium for Hereditary Breast and Ovarian Cancer, comprising full pedigrees with cancer status of all individual members at the time of first counselling, and BRCA1/2 mutation status of the index patient. RESULTS: The overall BRCA1/2 mutation prevalence was 24.0% (95% CI 23.4% to 24.6%). Highest mutation frequencies were observed in families with at least two OCs (41.9%, 95% CI 36.1% to 48.0%) and families with at least one breast and one OC (41.6%, 95% CI 40.3% to 43.0%), followed by male BC with at least one female BC or OC (35.8%; 95% CI 32.2% to 39.6%). In families with a single case of early BC (<36 years), mutations were found in 13.7% (95% CI 11.9% to 15.7%). Postmenopausal unilateral or bilateral BC did not increase the probability of mutation detection. Occurrence of premenopausal BC and OC in the same woman led to higher mutation frequencies compared with the occurrence of these two cancers in different individuals (49.0%; 95% CI 41.0% to 57.0% vs 31.5%; 95% CI 28.0% to 35.2%). CONCLUSIONS: Our data provide guidance for healthcare professionals and decision-makers to identify individuals who should undergo genetic testing for hereditary breast and ovarian cancer. Moreover, it supports informed decision-making of counselees on the uptake of genetic testing.

Authors: K. Kast, K. Rhiem, B. Wappenschmidt, E. Hahnen, J. Hauke, B. Bluemcke, V. Zarghooni, N. Herold, N. Ditsch, M. Kiechle, M. Braun, C. Fischer, N. Dikow, S. Schott, N. Rahner, D. Niederacher, T. Fehm, A. Gehrig, C. Mueller-Reible, N. Arnold, N. Maass, G. Borck, N. de Gregorio, C. Scholz, B. Auber, R. Varon-Manteeva, D. Speiser, J. Horvath, N. Lichey, P. Wimberger, S. Stark, U. Faust, B. H. Weber, G. Emons, S. Zachariae, A. Meindl, R. K. Schmutzler, C. Engel

Date Published: 2nd Mar 2016

Publication Type: Journal article

Human Diseases: breast cancer, ovarian cancer

Abstract (Expand)

BACKGROUND: Cardiorespiratory fitness is a well-established independent predictor of cardiovascular health. However, the relevance of alternative exercise and non-exercise tests for cardiorespiratory fitness assessment in large cohorts has not been studied in detail. We aimed to evaluate the YMCA-step test and the Veterans Specific Activity Questionnaire (VSAQ) for the estimation of cardiorespiratory fitness in the general population. METHODS: One hundred and five subjects answered the VSAQ, performed the YMCA-step test and a maximal cardiopulmonary exercise test (CPX) and gave BORG ratings for both exercise tests (BORGSTEP, BORGCPX). Correlations of peak oxygen uptake on a treadmill (VO2_PEAK) with VSAQ, BORGSTEP, one-minute, post-exercise heartbeat count, and peak oxygen uptake during the step test (VO2_STEP) were determined. Moreover, the incremental values of the questionnaire and the step test in addition to other fitness-related parameters were evaluated using block-wise hierarchical regression analysis. RESULTS: Eighty-six subjects completed the step test according to the protocol. For completers, correlations of VO2_PEAK with the age- and gender-adjusted VSAQ, heartbeat count and VO2_STEP were 0.67, 0.63 and 0.49, respectively. However, using hierarchical regression analysis, age, gender and body mass index already explained 68.8% of the variance of VO2_PEAK, while the additional benefit of VSAQ was rather low (3.4%). The inclusion of BORGSTEP, heartbeat count and VO2_STEP increased R(2) by a further 2.2%, 3.3% and 5.6%, respectively, yielding a total R(2) of 83.3%. CONCLUSIONS: Neither VSAQ nor the YMCA-step test contributes sufficiently to the assessment of cardiorespiratory fitness in population-based studies.

Authors: A. Teren, S. Zachariae, F. Beutner, R. Ubrich, M. Sandri, C. Engel, M. Loffler, S. Gielen

Date Published: 15th Dec 2015

Publication Type: Not specified

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies