Imaging genetics of FOXP2 in dyslexia

Abstract:

Dyslexia is a developmental disorder characterised by extensive difficulties in the acquisition of reading or spelling. Genetic influence is estimated at 50-70%. However, the link between genetic variants and phenotypic deficits is largely unknown. Our aim was to investigate a role of genetic variants of FOXP2, a prominent speech and language gene, in dyslexia using imaging genetics. This technique combines functional magnetic resonance imaging (fMRI) and genetics to investigate relevance of genetic variants on brain activation. To our knowledge, this represents the first usage of fMRI-based imaging genetics in dyslexia. In an initial case/control study (n = 245) for prioritisation of FOXP2 polymorphisms for later use in imaging genetics, nine SNPs were selected. A non-synonymously coding mutation involved in verbal dyspraxia was also investigated. SNP rs12533005 showed nominally significant association with dyslexia (genotype GG odds ratio recessive model = 2.1 (95% confidence interval 1.1-3.9), P = 0.016). A correlated SNP was associated with altered expression of FOXP2 in vivo in human hippocampal tissue. Therefore, influence of the rs12533005-G risk variant on brain activity was studied. fMRI revealed a significant main effect for the factor ’genetic risk’ in a temporo-parietal area involved in phonological processing as well as a significant interaction effect between the factors ’disorder’ and ’genetic risk’ in activation of inferior frontal brain areas. Hence, our data may hint at a role of FOXP2 genetic variants in dyslexia-specific brain activation and demonstrate use of imaging genetics in dyslexia research. Dyslexia is a developmental disorder characterised by extensive difficulties in the acquisition of reading or spelling. Genetic influence is estimated at 50-70%. However, the link between genetic variants and phenotypic deficits is largely unknown. Our aim was to investigate a role of genetic variants of FOXP2, a prominent speech and language gene, in dyslexia using imaging genetics. This technique combines functional magnetic resonance imaging (fMRI) and genetics to investigate relevance of genetic variants on brain activation. To our knowledge, this represents the first usage of fMRI-based imaging genetics in dyslexia. In an initial case/control study (n = 245) for prioritisation of FOXP2 polymorphisms for later use in imaging genetics, nine SNPs were selected. A non-synonymously coding mutation involved in verbal dyspraxia was also investigated. SNP rs12533005 showed nominally significant association with dyslexia (genotype GG odds ratio recessive model = 2.1 (95% confidence interval 1.1-3.9), P = 0.016). A correlated SNP was associated with altered expression of FOXP2 in vivo in human hippocampal tissue. Therefore, influence of the rs12533005-G risk variant on brain activity was studied. fMRI revealed a significant main effect for the factor ’genetic risk’ in a temporo-parietal area involved in phonological processing as well as a significant interaction effect between the factors ’disorder’ and ’genetic risk’ in activation of inferior frontal brain areas. Hence, our data may hint at a role of FOXP2 genetic variants in dyslexia-specific brain activation and demonstrate use of imaging genetics in dyslexia research.

DOI: 10.1038/ejhg.2011.160

Projects: Genetical Statistics and Systems Biology

Publication type: Journal article

Journal: European journal of human genetics : EJHG

Human Diseases: No Human Disease specified

Citation: Eur J Hum Genet 20(2):224-229

Date Published: 1st Feb 2012

Registered Mode: imported from a bibtex file

Authors: Arndt Wilcke, Carolin Ligges, Jana Burkhardt, Michael Alexander, Christiane Wolf, Elfi Quente, Peter Ahnert, Per Hoffmann, Albert Becker, Bertram Müller-Myhsok, Sven Cichon, Johannes Boltze, Holger Kirsten

Help
help Submitter
Citation
Wilcke, A., Ligges, C., Burkhardt, J., Alexander, M., Wolf, C., Quente, E., Ahnert, P., Hoffmann, P., Becker, A., Müller-Myhsok, B., Cichon, S., Boltze, J., & Kirsten, H. (2011). Imaging genetics of FOXP2 in dyslexia. In European Journal of Human Genetics (Vol. 20, Issue 2, pp. 224–229). Springer Science and Business Media LLC. https://doi.org/10.1038/ejhg.2011.160
Activity

Views: 715

Created: 14th Sep 2020 at 13:35

Last updated: 7th Dec 2021 at 17:58

help Tags

This item has not yet been tagged.

help Attributions

None

Related items

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies