Publications

46 Publications visible to you, out of a total of 46

Abstract (Expand)

The European Health Data Space (EHDS) Regulation assigns rights and obligations to the stakeholders of health information logistics across Europe. This implies specific requirements for the architecture of a European health information system. Since enterprise architecture models (EAM) effectively support the development of such information systems, we present an EAM based on the three-layer graph-based metamodel (3LGMs). The EHDS 3LGMs model describes the tasks of the stakeholders, the data to be processed and the necessary application systems and services for primary and secondary use of data. The model is freely available together with the 3LGMs tool.

Authors: A. Winter, F. Jahn, M. Lobe, S. Staubert

Date Published: 15th May 2025

Publication Type: Journal article

Abstract

Not specified

Authors: Konrad Höffner, Thomas Pause, Franziska Jahn, Hannes Raphael Brunsch, Anna Brakemeier, Alfred Winter

Date Published: 1st Jul 2024

Publication Type: Journal article

Abstract

SNIK is an ontology of information management in hospitals that consists of a meta model and several subontologies.

Authors: Alfred Winter, Barbara Paech, Franziska Jahn, Birgit Schneider, Christian Kücherer, Konrad Höffner

Date Published: 2024

Publication Type: Misc

Abstract (Expand)

The Data Integration Centers (DICs), all part of the German Medical Informatics Initiative (MII), prepare routine care data captured in university hospitals to enable its reuse in clinical research. Tackling this challenging task requires them to maintain multiple data stores, implement the necessary transformation processes, and provide the required terminology services, all while also addressing the use case specific needs researchers might have. An MII wide application of the standardized profiles defined in the IHE QRPH domain might therefore be able to drastically reduce the overhead at any one DIC. The MII DIC reference model built in 3LGM2, a method to describe complex information system architectures, serves as a starting point to evaluate whether such an application is possible. We first extend the IHE modeling capabilities of 3LGM2 to also support the five profiles from the QRPH domain that our experts evaluated as relevant in the MII DIC context. We then expand the DIC reference model by some IHE QRPH actors and transactions, showing that their application could be beneficial in the MII DIC context, provided they surpass their trial status.

Authors: C. Draeger, S. Staubert, A. Kuntz, C. Henke, A. Winter, U. Sax, M. Lobe

Date Published: 20th Oct 2023

Publication Type: Journal article

Abstract (Expand)

BACKGROUND: The Federal Ministry of Education and Research of Germany (BMBF) funds a network of university medicines (NUM) to support COVID-19 and pandemic research at national level. The “COVID-19 Data Exchange Platform” (CODEX) as part of NUM establishes a harmonised infrastructure that supports research use of COVID-19 datasets. The broad consent (BC) of the Medical Informatics Initiative (MII) is agreed by all German federal states and forms the legal base for data processing. All 34 participating university hospitals (NUM sites) work upon a harmonised infrastructural as well as legal basis for their data protection-compliant collection and transfer of their research dataset to the central CODEX platform. Each NUM site ensures that the exchanged consent information conforms to the already-balloted HL7 FHIR consent profiles and the interoperability concept of the MII Task Force “Consent Implementation” (TFCI). The Independent Trusted Third-Party (TTP) of the University Medicine Greifswald supports data protection-compliant data processing and provides the consent management solutions gICS. METHODS: Based on a stakeholder dialogue a required set of FHIR-functionalities was identified and technically specified supported by official FHIR experts. Next, a “TTP-FHIR Gateway” for the HL7 FHIR-compliant exchange of consent information using gICS was implemented. A last step included external integration tests and the development of a pre-configured consent template for the BC for the NUM sites. RESULTS: A FHIR-compliant gICS-release and a corresponding consent template for the BC were provided to all NUM sites in June 2021. All FHIR functionalities comply with the already-balloted FHIR consent profiles of the HL7 Working Group Consent Management. The consent template simplifies the technical BC rollout and the corresponding implementation of the TFCI interoperability concept at the NUM sites. CONCLUSIONS: This article shows that a HL7 FHIR-compliant and interoperable nationwide exchange of consent information could be built using of the consent management software gICS and the provided TTP-FHIR Gateway. The initial functional scope of the solution covers the requirements identified in the NUM-CODEX setting. The semantic correctness of these functionalities was validated by project-partners from the Ludwig-Maximilian University in Munich. The production rollout of the solution package to all NUM sites has started successfully.

Authors: Martin Bialke, Lars Geidel, Christopher Hampf, Arne Blumentritt, Peter Penndorf, Ronny Schuldt, Frank-Michael Moser, Stefan Lang, Patrick Werner, Sebastian Stäubert, Hauke Hund, Fady Albashiti, Jürgen Gührer, Hans-Ulrich Prokosch, Thomas Bahls, Wolfgang Hoffmann

Date Published: 1st Dec 2022

Publication Type: Journal article

Abstract (Expand)

OBJECTIVES: The TMF (Technology, Methods, and Infrastructure for Networked Medical Research) Data Protection Guide (TMF-DP) makes path-breaking recommendations on the subject of data protection in research projects. It includes comprehensive requirements for applications such as patient lists, pseudonymization services, and consent management services. Nevertheless, it lacks a structured, categorized list of requirements for simplified application in research projects and systematic evaluation. The 3LGM2IHE ("Three-layer Graphbased meta model - Integrating the Healthcare Enterprise [IHE] " ) project is funded by the German Research Foundation (DFG). 3LGM2IHE aims to define modeling paradigms and implement modeling tools for planning health care information systems. In addition, one of the goals is to create and publish 3LGM(2) information system architecture design patterns (short "design patterns") for the community as design models in terms of a framework. A structured list of data protection-related requirements based on the TMF-DP is a precondition to integrate functions (3LGM(2) Domain Layer) and building blocks (3LGM(2) Logical Tool Layer) in 3LGM(2) design patterns. METHODS: In order to structure the continuous text of the TMF-DP, requirement types were defined in a first step. In a second step, dependencies and delineations of the definitions were identified. In a third step, the requirements from the TMF-DP were systematically extracted. Based on the identified lists of requirements, a fourth step included the comparison of the identified requirements with exemplary open source tools as provided by the "Independent Trusted Third Party of the University Medicine Greifswald" (TTP tools). RESULTS: As a result, four lists of requirements were created, which contain requirements for the "patient list", the "pseudonymization service", and the "consent management", as well as cross-component requirements from the TMF-DP chapter 6 in a structured form. Further to requirements (1), possible variants (2) of implementations (to fulfill a single requirement) and recommendations (3) were identified. A comparison of the requirements lists with the functional scopes of the open source tools E-PIX (record linkage), gPAS (pseudonym management), and gICS (consent management) has shown that these fulfill more than 80% of the requirements. CONCLUSIONS: A structured set of data protection-related requirements facilitates a systematic evaluation of implementations with respect to the fulfillment of the TMF-DP guidelines. These re-usable lists provide a decision aid for the selection of suitable tools for new research projects. As a result, these lists form the basis for the development of data protection-related 3LGM(2) design patterns as part of the 3LGM2IHE project.

Authors: R. Gott, S. Staubert, A. Strubing, A. Winter, A. Merzweiler, B. Bergh, K. Kaulke, T. Bahls, W. Hoffmann, M. Bialke

Date Published: 24th Sep 2022

Publication Type: Journal article

Abstract (Expand)

Sharing data is of great importance for research in medical sciences. It is the basis for reproducibility and reuse of already generated outcomes in new projects and in new contexts. FAIR data principles are the basics for sharing data. The Leipzig Health Atlas (LHA) platform follows these principles and provides data, describing metadata, and models that have been implemented in novel software tools and are available as demonstrators. LHA reuses and extends three different major components that have been previously developed by other projects. The SEEK management platform is the foundation providing a repository for archiving, presenting and secure sharing a wide range of publication results, such as published reports, (bio)medical data as well as interactive models and tools. The LHA Data Portal manages study metadata and data allowing to search for data of interest. Finally, PhenoMan is an ontological framework for phenotype modelling. This paper describes the interrelation of these three components. In particular, we use the PhenoMan to, firstly, model and represent phenotypes within the LHA platform. Then, secondly, the ontological phenotype representation can be used to generate search queries that are executed by the LHA Data Portal. The PhenoMan generates the queries in a novel domain specific query language (SDQL), which is specific for data management systems based on CDISC ODM standard, such as the LHA Data Portal. Our approach was successfully applied to represent phenotypes in the Leipzig Health Atlas with the possibility to execute corresponding queries within the LHA Data Portal.

Authors: A. Uciteli, C. Beger, J. Wagner, A. Kiel, F. A. Meineke, S. Staubert, M. Lobe, R. Hansel, J. Schuster, T. Kirsten, H. Herre

Date Published: 24th May 2021

Publication Type: Journal article

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies