Publications

188 Publications visible to you, out of a total of 188

Abstract (Expand)

BACKGROUND\backslashr\backslashnThe aim of our study was to evaluate the between-assay variability of commercially available immunoassays for the measurement of human growth hormone (hGH). In addition, we asked whether the comparability of the diagnosis of childhood onset growth hormone deficiency could be improved by adjusting hGH results by statistical methods, such as linear regression, conversion factors, and quantile transformation.\backslashr\backslashnMETHODS\backslashr\backslashnIn archived sera from 312 children and adolescents (age: 17 days-17 years) hGH values between 0.01 and 16.5 ng/mL were determined by using the following immunoassays: AutoDELFIA (PerkinElmer), BC-IRMA (Beckman-Coulter), ELISA (Mediagnost), IMMULITE 2000 (Siemens), iSYS (IDS), Liaison (DiaSorin), UniCel DxI 800 Access (BeckmanCoulter) and {\textquotedblIn house{\textquotedbl-RIA (Tübingen).\backslashr\backslashnRESULTS\backslashr\backslashnThe assays differed in median hGH concentrations by as much as 5.44 ng/mL (Immulite), and as little as 2.67 ng/mL (BC-IRMA). The mean difference between assays ranged from 0.35 to 2.71 ng/mL, whereas several samples displayed differences up to 11.4 ng/mL. The best correlation (r=0.992) was found between AutoDELFIA and Liasion, the lowest (r=0.864) was between an in-house RIA and iSYS. The between-assay CV (mean \pm SD) of values within the cut-off range was 24.3% \pm 7.4%, resulting in an assay-dependent diagnosis of growth hormone deficiency (GHD) in more than 27% of patients. Yet, adjustment of this data by linear regression or a conversion factor reduced the CV below 14%, and the ratio of assay-dependent diagnoses below 8%. Using quantile transformation, the CV and ratio were reduced to 11.4% and \textless1%, respectively.\backslashr\backslashnCONCLUSIONS\backslashr\backslashnhGH measurements using different assays vary significantly. Linear regression, conversion factors, or particularly quantile transformation are useful tools to improve comparability in the diagnostic procedure for the confirmation of GHD in childhood and adolescence.

Authors: Anne Müller, Markus Scholz, Oliver Blankenstein, Gerhard Binder, Roland Pfäffle, Antje Körner, Wieland Kiess, Annegret Heider, Martin Bidlingmaier, Joachim Thiery, Jürgen Kratzsch

Date Published: 2011

Publication Type: Journal article

Abstract (Expand)

BACKGROUND: Obesity is of complex origin, involving genetic and neurobehavioral factors. Genetic polymorphisms may increase the risk for developing obesity by modulating dopamine-dependent behaviors, such as reward processing. Yet, few studies have investigated the association of obesity, related genetic variants, and structural connectivity of the dopaminergic reward network. METHODS: We analyzed 347 participants (age range: 20-59 years, BMI range: 17-38 kg/m(2)) of the LIFE-Adult Study. Genotyping for the single nucleotid polymorphisms rs1558902 (FTO) and rs1800497 (near dopamine D2 receptor) was performed on a microarray. Structural connectivity of the reward network was derived from diffusion-weighted magnetic resonance imaging at 3 T using deterministic tractography of Freesurfer-derived regions of interest. Using graph metrics, we extracted summary measures of clustering coefficient and connectivity strength between frontal and striatal brain regions. We used linear models to test the association of BMI, risk alleles of both variants, and reward network connectivity. RESULTS: Higher BMI was significantly associated with lower connectivity strength for number of streamlines (beta = -0.0025, 95%-C.I.: [-0.004, -0.0008], p = 0.0042), and, to lesser degree, fractional anisotropy (beta = -0.0009, 95%-C.I. [-0.0016, -0.00008], p = 0.031), but not clustering coefficient. Strongest associations were found for left putamen, right accumbens, and right lateral orbitofrontal cortex. As expected, the polymorphism rs1558902 in FTO was associated with higher BMI (F = 6.9, p < 0.001). None of the genetic variants was associated with reward network structural connectivity. CONCLUSIONS: Here, we provide evidence that higher BMI correlates with lower reward network structural connectivity. This result is in line with previous findings of obesity-related decline in white matter microstructure. We did not observe an association of variants in FTO or near DRD2 receptor with reward network structural connectivity in this population-based cohort with a wide range of BMI and age. Future research should further investigate the link between genetics, obesity and fronto-striatal structural connectivity.

Authors: F. Beyer, R. Zhang, M. Scholz, K. Wirkner, M. Loeffler, M. Stumvoll, A. Villringer, A. V. Witte

Date Published: 25th Oct 2020

Publication Type: Journal article

Abstract (Expand)

Meningiomas are classified as benign, atypical, or anaplastic. The majority are sporadic, solitary, and benign tumors with favorable prognoses. However, the prognosis for patients with anaplastic meningiomas remains less favorable. High resolution genomic profiling has the capacity to provide more detailed information. Therefore, we analyzed genomic aberrations of benign and atypical meningiomas using single nucleotide polymorphism (SNP) array, combined with G-banding by trypsin using Giemsa stain (GTG banding), spectral karyotyping, and locus-specific fluorescence in situ hybridization (FISH). We confirmed frequently detected chromosomal aberrations in meningiomas and identified novel genetic events. Applying SNP array, we identified constitutional de novo loss or gain within chromosome 22 in three patients, possibly representing inherited causal events for meningioma formation. We show evidence for somatic segmental uniparental disomy in regions 4p16.1, 7q31.2, 8p23.2, and 9p22.1 not previously described for primary meningioma. GTG-banding and spectral karyotyping detected a novel balanced reciprocal translocation t(4;10)(q12;q26) in one benign meningioma. A paracentric inversion within 1p36, previously described as novel, was detected as a recurrent chromosomal aberration in benign and atypical meningiomas. Analyses of tumors and matched normal tissues with a combination of SNP arrays and complementary techniques will help to further elucidate potentially causal genetic events for tumorigenesis of meningioma.

Authors: Heidrun Holland, Kristin Mocker, Peter Ahnert, Holger Kirsten, Helene Hantmann, Ronald Koschny, Manfred Bauer, Ralf Schober, Markus Scholz, Jürgen Meixensberger, Wolfgang Krupp

Date Published: 1st Oct 2011

Publication Type: Journal article

Abstract (Expand)

CONTEXT Common genetic susceptibility may underlie the frequently observed co-occurrence of type 1 and type 2 diabetes in families. Given the role of HLA class II genes in the pathophysiology of typee 1 diabetes, the aim of the present study was to test the association of high density imputed human leukocyte antigen (HLA) genotypes with type 2 diabetes. OBJECTIVES AND DESIGN Three cohorts (Ntotal = 10 413) from Leipzig, Germany were included in this study: LIFE-Adult (N = 4649), LIFE-Heart (N = 4815) and the Sorbs (N = 949) cohort. Detailed metabolic phenotyping and genome-wide single nucleotide polymorphism (SNP) data were available for all subjects. Using 1000 Genome imputation data, HLA genotypes were imputed on 4-digit level and association tests for type 2 diabetes, and related metabolic traits were conducted. RESULTS In a meta-analysis including all 3 cohorts, the absence of HLA-DRB5 was associated with increased risk of type 2 diabetes (P = 0.001). In contrast, HLA-DQB*06:02 and HLA-DQA*01:02 had a protective effect on type 2 diabetes (P = 0.005 and 0.003, respectively). Both alleles are part of the well-established type 1 diabetes protective haplotype DRB1*15:01~DQA1*01:02~DQB1*06:02, which was also associated with reduced risk of type 2 diabetes (OR 0.84; P = 0.005). On the contrary, the DRB1*07:01~DQA1*02:01~DQB1*03:03 was identified as a risk haplotype in non-insulin-treated diabetes (OR 1.37; P = 0.002). CONCLUSIONS Genetic variation in the HLA class II locus exerts risk and protective effects on non-insulin-treated type 2 diabetes. Our data suggest that the genetic architecture of type 1 diabetes and type 2 diabetes might share common components on the HLA class II locus.

Authors: Thomas Jacobi, Lucas Massier, Nora Klöting, Katrin Horn, Alexander Schuch, Peter Ahnert, Christoph Engel, Markus Löffler, Ralph Burkhardt, Joachim Thiery, Anke Tönjes, Michael Stumvoll, Matthias Blüher, Ilias Doxiadis, Markus Scholz, Peter Kovacs

Date Published: 1st Mar 2020

Publication Type: Journal article

Abstract (Expand)

Arousal affects cognition, emotion, and behavior and has been implicated in the etiology of psychiatric disorders. Although environmental conditions substantially contribute to the level of arousal, stable interindividual characteristics are well-established and a genetic basis has been suggested. Here we investigated the molecular genetics of brain arousal in the resting state by conducting a genome-wide association study (GWAS). We selected N = 1877 participants from the population-based LIFE-Adult cohort. Participants underwent a 20-min eyes-closed resting state EEG, which was analyzed using the computerized VIGALL 2.1 (Vigilance Algorithm Leipzig). At the SNP-level, GWAS analyses revealed no genome-wide significant locus (p \textless 5E-8), although seven loci were suggestive (p \textless 1E-6). The strongest hit was an expression quantitative trait locus (eQTL) of TMEM159 (lead-SNP: rs79472635, p = 5.49E-8). Importantly, at the gene-level, GWAS analyses revealed significant evidence for TMEM159 (p = 0.013, Bonferroni-corrected). By mapping our SNPs to the GWAS results from the Psychiatric Genomics Consortium, we found that all corresponding markers of TMEM159 showed nominally significant associations with Major Depressive Disorder (MDD; 0.006 ≤ p ≤ 0.011). More specifically, variants associated with high arousal levels have previously been linked to an increased risk for MDD. In line with this, the MetaXcan database suggests increased expression levels of TMEM159 in MDD, as well as Autism Spectrum Disorder, and Alzheimer’s Disease. Furthermore, our pathway analyses provided evidence for a role of sodium/calcium exchangers in resting state arousal. In conclusion, the present GWAS identifies TMEM159 as a novel candidate gene which may modulate the risk for psychiatric disorders through arousal mechanisms. Our results also encourage the elaboration of the previously reported interrelations between ion-channel modulators, sleep-wake behavior, and psychiatric disorders.   Arousal affects cognition, emotion, and behavior and has been implicated in the etiology of psychiatric disorders. Although environmental conditions substantially contribute to the level of arousal, stable interindividual characteristics are well-established and a genetic basis has been suggested. Here we investigated the molecular genetics of brain arousal in the resting state by conducting a genome-wide association study (GWAS). We selected N = 1877 participants from the population-based LIFE-Adult cohort. Participants underwent a 20-min eyes-closed resting state EEG, which was analyzed using the computerized VIGALL 2.1 (Vigilance Algorithm Leipzig). At the SNP-level, GWAS analyses revealed no genome-wide significant locus (p \textless 5E-8), although seven loci were suggestive (p \textless 1E-6). The strongest hit was an expression quantitative trait locus (eQTL) of TMEM159 (lead-SNP: rs79472635, p = 5.49E-8). Importantly, at the gene-level, GWAS analyses revealed significant evidence for TMEM159 (p = 0.013, Bonferroni-corrected). By mapping our SNPs to the GWAS results from the Psychiatric Genomics Consortium, we found that all corresponding markers of TMEM159 showed nominally significant associations with Major Depressive Disorder (MDD; 0.006 ≤ p ≤ 0.011). More specifically, variants associated with high arousal levels have previously been linked to an increased risk for MDD. In line with this, the MetaXcan database suggests increased expression levels of TMEM159 in MDD, as well as Autism Spectrum Disorder, and Alzheimer’s Disease. Furthermore, our pathway analyses provided evidence for a role of sodium/calcium exchangers in resting state arousal. In conclusion, the present GWAS identifies TMEM159 as a novel candidate gene which may modulate the risk for psychiatric disorders through arousal mechanisms. Our results also encourage the elaboration of the previously reported interrelations between ion-channel modulators, sleep-wake behavior, and psychiatric disorders. // Arousal affects cognition, emotion, and behavior and has been implicated in the etiology of psychiatric disorders. Although environmental conditions substantially contribute to the level of arousal, stable interindividual characteristics are well-established and a genetic basis has been suggested. Here we investigated the molecular genetics of brain arousal in the resting state by conducting a genome-wide association study (GWAS). We selected N = 1877 participants from the population-based LIFE-Adult cohort. Participants underwent a 20-min eyes-closed resting state EEG, which was analyzed using the computerized VIGALL 2.1 (Vigilance Algorithm Leipzig). At the SNP-level, GWAS analyses revealed no genome-wide significant locus (p \textless 5E-8), although seven loci were suggestive (p \textless 1E-6). The strongest hit was an expression quantitative trait locus (eQTL) of TMEM159 (lead-SNP: rs79472635, p = 5.49E-8). Importantly, at the gene-level, GWAS analyses revealed significant evidence for TMEM159 (p = 0.013, Bonferroni-corrected). By mapping our SNPs to the GWAS results from the Psychiatric Genomics Consortium, we found that all corresponding markers of TMEM159 showed nominally significant associations with Major Depressive Disorder (MDD; 0.006 ≤ p ≤ 0.011). More specifically, variants associated with high arousal levels have previously been linked to an increased risk for MDD. In line with this, the MetaXcan database suggests increased expression levels of TMEM159 in MDD, as well as Autism Spectrum Disorder, and Alzheimer’s Disease. Furthermore, our pathway analyses provided evidence for a role of sodium/calcium exchangers in resting state arousal. In conclusion, the present GWAS identifies TMEM159 as a novel candidate gene which may modulate the risk for psychiatric disorders through arousal mechanisms. Our results also encourage the elaboration of the previously reported interrelations between ion-channel modulators, sleep-wake behavior, and psychiatric disorders.

Authors: Philippe Jawinski, Holger Kirsten, Christian Sander, Janek Spada, Christine Ulke, Jue Huang, Ralph Burkhardt, Markus Scholz, Tilman Hensch, Ulrich Hegerl

Date Published: 1st Nov 2019

Publication Type: Journal article

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies