Publications

188 Publications visible to you, out of a total of 188

Abstract (Expand)

OBJECTIVES Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is widely used to treat neutropenia during cytotoxic chemotherapy. The optimal scheduling of rhG-CSF is unknown and cann hardly be tested in clinical studies due to numerous therapy parameters affecting outcome (chemotherapeutic regimen, rhG-CSF schedules, individual covariables). Motivated by biomathematical model simulations, we aim to investigate different rhG-CSF schedules in a preclinical chemotherapy mouse model. METHODS The time course of hematotoxicity was studied in CD-1 mice after cyclophosphamide (CP) administration. Filgrastim was applied concomitantly in a 2 x 3-factorial design of two dosing options (2 x 20 mug and 4 x 10 mug) and three timing options (directly, one, and two days after CP). Alternatively, a single dose of 40 mug pegfilgrastim was applied at the three timing options. The resulting cytopenia was compared among the schedules. RESULTS Dosing and timing had a significant influence on the effectiveness of filgrastim schedules whereas for pegfilgrastim the timing effect was irrelevant. The best filgrastim and pegfilgrastim schedules exhibited equivalent toxicity. Monocytes dynamics performed analogously to granulocytes. All schedules showed roughly the same lymphotoxicity. CONCLUSION We conclude that effectiveness of filgrastim application depends heavily on its scheduling during chemotherapy. There is an optimum of timing. Dose splitting is better than concentrated applications. Effectiveness of pegfilgrastim is less dependent on timing. OBJECTIVES Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is widely used to treat neutropenia during cytotoxic chemotherapy. The optimal scheduling of rhG-CSF is unknown and can hardly be tested in clinical studies due to numerous therapy parameters affecting outcome (chemotherapeutic regimen, rhG-CSF schedules, individual covariables). Motivated by biomathematical model simulations, we aim to investigate different rhG-CSF schedules in a preclinical chemotherapy mouse model. METHODS The time course of hematotoxicity was studied in CD-1 mice after cyclophosphamide (CP) administration. Filgrastim was applied concomitantly in a 2 x 3-factorial design of two dosing options (2 x 20 mug and 4 x 10 mug) and three timing options (directly, one, and two days after CP). Alternatively, a single dose of 40 mug pegfilgrastim was applied at the three timing options. The resulting cytopenia was compared among the schedules. RESULTS Dosing and timing had a significant influence on the effectiveness of filgrastim schedules whereas for pegfilgrastim the timing effect was irrelevant. The best filgrastim and pegfilgrastim schedules exhibited equivalent toxicity. Monocytes dynamics performed analogously to granulocytes. All schedules showed roughly the same lymphotoxicity. CONCLUSION We conclude that effectiveness of filgrastim application depends heavily on its scheduling during chemotherapy. There is an optimum of timing. Dose splitting is better than concentrated applications. Effectiveness of pegfilgrastim is less dependent on timing.

Authors: Markus Scholz, Manuela Ackermann, Frank Emmrich, Markus Loeffler, Manja Kamprad

Date Published: 2009

Publication Type: Journal article

Abstract (Expand)

BACKGROUND\backslashr\backslashnOne of the most promising options for treatment of stroke using adult stem cells are human umbilical cord blood (HUCB) cells that were already approved for therapeutic efficacy in vivo. However, complexity of animal models has thus far limited the understanding of beneficial cellular mechanisms. To address the influence of HUCB cells on neuronal tissue after stroke we established and employed a human in vitro model of neuronal hypoxia using fully differentiated vulnerable SH-SY5Y cells. These cells were incubated under an oxygen-reduced atmosphere (O2\textless 1%) for 48 hours. Subsequently, HUCB mononuclear cells (MNC) were added to post-hypoxic neuronal cultures. These cultures were characterized regarding to the development of apoptosis and necrosis over three days. Based on this we investigated the therapeutic influence of HUCB MNC on the progression of apoptotic cell death. The impact of HUCB cells and hypoxia on secretion of neuroprotective and inflammatory cytokines, chemokines and expression of adhesion molecules was proved.\backslashr\backslashnRESULTS\backslashr\backslashnHypoxic cultivation of neurons initially induced a rate of 26% +/- 13% of apoptosis. Hypoxia also caused an enhanced expression of Caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP). Necrosis was only detected in low amounts. Within the next three days rate of apoptosis in untreated hypoxic cultures cumulated to 85% +/- 11% (p \textless or = 0.001). Specific cytokine (VEGF) patterns also suggest anti-apoptotic strategies of neuronal cells. Remarkably, the administration of MNC showed a noticeable reduction of apoptosis rates to levels of normoxic control cultures (7% +/- 3%; p \textless or = 0.001). In parallel, clustering of administered MNC next to axons and somata of neuronal cells was observed. Furthermore, MNC caused a pronounced increase of chemokines (CCL5; CCL3 and CXCL10).\backslashr\backslashnCONCLUSION\backslashr\backslashnWe established an in vitro model of neuronal hypoxia that affords the possibility to investigate both, apoptotic neuronal cell death and neuroprotective therapies. Here we employed the therapeutic model to study neuroprotective properties of HUCB cells. We hypothesize that the neuroprotective effect of MNC was due to anti-apoptotic mechanisms related to direct cell-cell contacts with injured neuronal cells and distinct changes in neuroprotective, inflammatory cytokines as well as to the upregulation of chemokines within the co-cultures. BACKGROUND One of the most promising options for treatment of stroke using adult stem cells are human umbilical cord blood (HUCB) cells that were already approved for therapeutic efficacy in vivo. However, complexity of animal models has thus far limited the understanding of beneficial cellular mechanisms. To address the influence of HUCB cells on neuronal tissue after stroke we established and employed a human in vitro model of neuronal hypoxia using fully differentiated vulnerable SH-SY5Y cells. These cells were incubated under an oxygen-reduced atmosphere (O2\textless 1%) for 48 hours. Subsequently, HUCB mononuclear cells (MNC) were added to post-hypoxic neuronal cultures. These cultures were characterized regarding to the development of apoptosis and necrosis over three days. Based on this we investigated the therapeutic influence of HUCB MNC on the progression of apoptotic cell death. The impact of HUCB cells and hypoxia on secretion of neuroprotective and inflammatory cytokines, chemokines and expression of adhesion molecules was proved. RESULTS Hypoxic cultivation of neurons initially induced a rate of 26% +/- 13% of apoptosis. Hypoxia also caused an enhanced expression of Caspase-3 and cleaved poly(ADP-ribose) polymerase (PARP). Necrosis was only detected in low amounts. Within the next three days rate of apoptosis in untreated hypoxic cultures cumulated to 85% +/- 11% (p \textless or = 0.001). Specific cytokine (VEGF) patterns also suggest anti-apoptotic strategies of neuronal cells. Remarkably, the administration of MNC showed a noticeable reduction of apoptosis rates to levels of normoxic control cultures (7% +/- 3%; p \textless or = 0.001). In parallel, clustering of administered MNC next to axons and somata of neuronal cells was observed. Furthermore, MNC caused a pronounced increase of chemokines (CCL5; CCL3 and CXCL10). CONCLUSION We established an in vitro model of neuronal hypoxia that affords the possibility to investigate both, apoptotic neuronal cell death and neuroprotective therapies. Here we employed the therapeutic model to study neuroprotective properties of HUCB cells. We hypothesize that the neuroprotective effect of MNC was due to anti-apoptotic mechanisms related to direct cell-cell contacts with injured neuronal cells and distinct changes in neuroprotective, inflammatory cytokines as well as to the upregulation of chemokines within the co-cultures.

Authors: Susann Hau, Doreen M. Reich, Markus Scholz, Wilfried Naumann, Frank Emmrich, Manja Kamprad, Johannes Boltze

Date Published: 2008

Publication Type: Journal article

Powered by
(v.1.13.0-master)
Copyright © 2008 - 2021 The University of Manchester and HITS gGmbH
Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig

By continuing to use this site you agree to the use of cookies